Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 29(6): 1280-1283, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37209696

RESUMO

Microscopy of mummified visceral tissue from a Medici family member in Italy identified a potential blood vessel containing erythrocytes. Giemsa staining, atomic force microscopy, and immunohistochemistry confirmed Plasmodium falciparum inside those erythrocytes. Our results indicate an ancient Mediterranean presence of P. falciparum, which remains responsible for most malaria deaths in Africa.


Assuntos
Malária Falciparum , Malária , Humanos , Malária/epidemiologia , Malária Falciparum/epidemiologia , Plasmodium falciparum , Microscopia/métodos , Itália/epidemiologia
2.
Curr Biol ; 28(14): 2348-2355.e9, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-30017480

RESUMO

The history of humankind is marked by the constant adoption of new dietary habits affecting human physiology, metabolism, and even the development of nutrition-related disorders. Despite clear archaeological evidence for the shift from hunter-gatherer lifestyle to agriculture in Neolithic Europe [1], very little information exists on the daily dietary habits of our ancestors. By undertaking a complementary -omics approach combined with microscopy, we analyzed the stomach content of the Iceman, a 5,300-year-old European glacier mummy [2, 3]. He seems to have had a remarkably high proportion of fat in his diet, supplemented with fresh or dried wild meat, cereals, and traces of toxic bracken. Our multipronged approach provides unprecedented analytical depth, deciphering the nutritional habit, meal composition, and food-processing methods of this Copper Age individual.


Assuntos
Dieta/história , Múmias , Arqueologia , Áustria , Gorduras na Dieta , Grão Comestível , História Antiga , Humanos , Itália , Masculino , Carne
3.
Cell ; 171(6): 1368-1382.e23, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29195076

RESUMO

Blood platelets are critical for hemostasis and thrombosis and play diverse roles during immune responses. Despite these versatile tasks in mammalian biology, their skills on a cellular level are deemed limited, mainly consisting in rolling, adhesion, and aggregate formation. Here, we identify an unappreciated asset of platelets and show that adherent platelets use adhesion receptors to mechanically probe the adhesive substrate in their local microenvironment. When actomyosin-dependent traction forces overcome substrate resistance, platelets migrate and pile up the adhesive substrate together with any bound particulate material. They use this ability to act as cellular scavengers, scanning the vascular surface for potential invaders and collecting deposited bacteria. Microbe collection by migrating platelets boosts the activity of professional phagocytes, exacerbating inflammatory tissue injury in sepsis. This assigns platelets a central role in innate immune responses and identifies them as potential targets to dampen inflammatory tissue damage in clinical scenarios of severe systemic infection.


Assuntos
Infecções Bacterianas/imunologia , Plaquetas/imunologia , Animais , Bactérias/classificação , Plaquetas/citologia , Vasos Sanguíneos/lesões , Vasos Sanguíneos/patologia , Cálcio/metabolismo , Movimento Celular , Polaridade Celular , Humanos , Inflamação/imunologia , Integrinas/metabolismo , Camundongos , Miosinas/metabolismo , Neutrófilos/citologia
4.
Biomacromolecules ; 16(7): 2179-87, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26101966

RESUMO

The properties of paper sheets can be tuned by adjusting the surface or bulk chemistry using functional polymers that are applied during (online) or after (offline) papermaking processes. In particular, polymers are widely used to enhance the mechanical strength of the wet state of paper sheets. However, the mechanical strength depends not only on the chemical nature of the polymeric additives but also on the distribution of the polymer on and in the lignocellulosic paper. Here, we analyze the photochemical attachment and distribution of hydrophilic polydimethylacrylamide-co-methacrylate-benzophenone P(DMAA-co-MABP) copolymers with defined amounts of photoreactive benzophenone moieties in model paper sheets. Raman microscopy was used for the unambiguous identification of P(DMAA-co-MABP) and cellulose specific bands and thus the copolymer distribution within the cellulose matrix. Two-dimensional Raman spectral maps at the intersections of overlapping cellulose fibers document that the macromolecules only partially surround the cellulose fibers, favor to attach to the fiber surface, and connect the cellulose fibers at crossings. Moreover, the copolymer appears to accumulate preferentially in holes, vacancies, and dips on the cellulose fiber surface. Correlative brightfield, Raman, and confocal laser scanning microscopy finally reveal a reticular three-dimensional distribution of the polymer and show that the polymer is predominately deposited in regions of high capillarity (i.e., in proximity to fine cellulose fibrils). These data provide deeper insights into the effects of paper functionalization with a copolymer and aid in understanding how these agents ultimately influence the local and overall properties of paper.


Assuntos
Celulose/ultraestrutura , Citometria de Varredura a Laser/métodos , Análise Espectral Raman/métodos , Benzofenonas/química , Metacrilatos/química , Papel , Processos Fotoquímicos , Fármacos Fotossensibilizantes/química , Reciclagem
5.
Cell Mol Life Sci ; 70(19): 3709-22, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23739949

RESUMO

The Tyrolean Iceman, a Copper-age ice mummy, is one of the best-studied human individuals. While the genome of the Iceman has largely been decoded, tissue-specific proteomes have not yet been investigated. We studied the proteome of two distinct brain samples using gel-based and liquid chromatography-mass spectrometry-based proteomics technologies together with a multiple-databases and -search algorithms-driven data-analysis approach. Thereby, we identified a total of 502 different proteins. Of these, 41 proteins are known to be highly abundant in brain tissue and 9 are even specifically expressed in the brain. Furthermore, we found 10 proteins related to blood and coagulation. An enrichment analysis revealed a significant accumulation of proteins related to stress response and wound healing. Together with atomic force microscope scans, indicating clustered blood cells, our data reopens former discussions about a possible injury of the Iceman's head near the site where the tissue samples have been extracted.


Assuntos
Química Encefálica , Múmias , Proteoma/genética , Proteoma/metabolismo , Biópsia/métodos , Encéfalo/metabolismo , Genoma Humano , Humanos
6.
J R Soc Interface ; 9(75): 2581-90, 2012 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-22552923

RESUMO

Changes in elasticity and structures of red blood cells (RBCs) are important indicators of disease, and this makes them interesting for medical studies. In forensics, blood analyses represent a crucial part of crime scene investigations. For these reasons, the recovery and analysis of blood cells from ancient tissues is of major interest. In this study, we show that RBCs were preserved in Iceman tissue samples for more than 5000 years. The morphological and molecular composition of the blood corpuscle is verified by atomic force microscope and Raman spectroscopy measurements. The cell size and shape approximated those of healthy, dried, recent RBCs. Raman spectra of the ancient corpuscle revealed bands that are characteristic of haemoglobin. Additional vibrational modes typical for other proteinaceous fragments, possibly fibrin, suggested the formation of a blood clot. The band intensities, however, were approximately an order of magnitude weaker than those of recent RBCs. This fact points to a decrease in the RBC-specific metalloprotein haemoglobin and, thus, to a degradation of the cells. Together, the results show the preservation of RBCs in the 5000 year old mummy tissue and give the first insights into their degradation.


Assuntos
Eritrócitos/química , Hemoglobinas/química , Múmias , Eritrócitos/ultraestrutura , Hemoglobinas/análise , Humanos , Microscopia de Força Atômica , Análise Espectral Raman
7.
J Biomed Mater Res A ; 100(2): 335-41, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22065548

RESUMO

Von Willebrand factor (vWF), a glycoprotein in blood, mediates the adhesion of blood platelets and thus plays a crucial role in hemostasis and thrombosis. Functional coating of surfaces with vWF allows the investigation of in vitro adhesion of blood platelet. We used soft lithography to create a functional patterned substrate. vWF was printed on plasma-treated glass and mica surfaces, producing elongated network-like fibril structures. A minimum layer thickness of 3 nm was observed, corresponding to the height of a monolayer of vWF. The stability of the patterns was verified in a laminar fluid flow, and the bioactivity of the structures was tested with platelet adhesion experiments. Platelets adhered to and spread on printed vWF. These results indicate that printed vWF substrates are stable and functional in typical perfusion experiments, and thus provide a useful tool for studying thrombus formation in vitro.


Assuntos
Bioimpressão/métodos , Plaquetas/química , Adesividade Plaquetária , Fator de von Willebrand/química , Humanos , Processamento de Imagem Assistida por Computador , Microscopia de Força Atômica , Gases em Plasma/farmacologia , Adesividade Plaquetária/efeitos dos fármacos
8.
Opt Lett ; 35(16): 2765-7, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20717450

RESUMO

Collagen is the main connective tissue protein of vertebrates and shows exceptional mechanical and optical properties. The alignment of collagen fibrils correlates to the function of a specific tissue and leads to optical anisotropy. The effect of the molecular alignment on Raman scattering, however, has barely been investigated. We found that the peak intensities of the C-C, C=O, and N-H vibrational modes, which are typical for the Raman bands of the protein backbone, change with the orientation of the collagen fibrils. These observations demonstrate that Raman spectra contain specific information regarding molecular and fiber alignment.


Assuntos
Colágeno/química , Análise Espectral Raman/métodos , Animais , Anisotropia , Humanos , Lasers , Luz
9.
Proc Biol Sci ; 277(1692): 2301-9, 2010 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-20356896

RESUMO

Skin protects the body from pathogens and degradation. Mummified skin in particular is extremely resistant to decomposition. External influences or the action of micro-organisms, however, can degrade the connective tissue and lay the subjacent tissue open. To determine the degree of tissue preservation in mummified human skin and, in particular, the reason for its durability, we investigated the structural integrity of its main protein, type I collagen. We extracted samples from the Neolithic glacier mummy known as 'the Iceman'. Atomic force microscopy (AFM) revealed collagen fibrils that had characteristic banding patterns of 69 +/- 5 nm periodicity. Both the microstructure and the ultrastructure of dermal collagen bundles and fibrils were largely unaltered and extremely well preserved by the natural conservation process. Raman spectra of the ancient collagen indicated that there were no significant modifications in the molecular structure. However, AFM nanoindentation measurements showed slight changes in the mechanical behaviour of the fibrils. Young's modulus of single mummified fibrils was 4.1 +/- 1.1 GPa, whereas the elasticity of recent collagen averages 3.2 +/- 1.0 GPa. The excellent preservation of the collagen indicates that dehydration owing to freeze-drying of the collagen is the main process in mummification and that the influence of the degradation processes can be addressed, even after 5300 years.


Assuntos
Colágeno Tipo I/ultraestrutura , Múmias , Nanoestruturas/ultraestrutura , Pele/ultraestrutura , Módulo de Elasticidade , Humanos , Microscopia de Força Atômica , Análise Espectral Raman
10.
Biochem Biophys Res Commun ; 354(1): 27-32, 2007 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-17210119

RESUMO

This study was carried out to determine the elastic properties of single collagen type I fibrils with the use of atomic force microscopy (AFM). Native collagen fibrils were formed by self-assembly in vitro characterized with the AFM. To confirm the inner assembly of the collagen fibrils, the AFM was used as a microdissection tool. Native collagen type I fibrils were dissected and the inner core uncovered. To determine the elastic properties of collagen fibrils the tip of the AFM was used as a nanoindentor by recording force-displacement curves. Measurements were done on the outer shell and in the core of the fibril. The structural investigations revealed the banding of the shell also in the core of native collagen fibrils. Nanoindentation experiments showed the same Young's modulus on the shell as well as in the core of the investigated native collagen fibrils. In addition, the measurements indicate a higher adhesion in the core of the collagen fibrils compared to the shell.


Assuntos
Colágeno Tipo I/química , Colágeno Tipo I/ultraestrutura , Microdissecção/métodos , Micromanipulação/métodos , Microscopia de Força Atômica/métodos , Modelos Químicos , Modelos Moleculares , Simulação por Computador , Elasticidade , Testes de Dureza , Conformação Proteica , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...